
Sponsored
Sponsored
Gray code can be generated using a simple bit manipulation technique. For a given integer k, the corresponding Gray code is obtained by XORing k with (k >> 1). This technique ensures that each step in changing numbers results in transitioning only one bit.
Time complexity: O(2n), traversing all numbers.
Space complexity: O(1), using constant extra space.
1#include <stdio.h>
2#include <math.h>
3
4void grayCode(int n) {
5 int size = pow(2, n);
6 for (int i = 0; i < size; i++) {
7 int gray = i ^ (i >> 1);
8 printf("%d ", gray);
9 }
10}
11
12int main() {
13 int n = 2;
14 grayCode(n);
15 return 0;
16}This C program calculates Gray codes by iterating from 0 to 2n - 1, computing each Gray code number using i ^ (i >> 1) for each integer i.
The Gray code can be recursively generated by reflecting the existing sequence. Start with a base case of n=1: [0,1]. For each subsequent n, reflect the current list, prepend a bit to the reflected part, and concatenate the results: if Gn-1 = [0, 1], then Gn = [0Gn-1, 1Gn-1].
Time complexity: O(2n), where recursions reflect and build upon previous results.
Space complexity: O(2n), allocating for the result array.
1#
This C implementation uses recursion to build the Gray code sequence by reflecting and appending. Allocate memory for the result array and fill it with generated codes.