




Sponsored
Sponsored
Gray code can be generated using a simple bit manipulation technique. For a given integer k, the corresponding Gray code is obtained by XORing k with (k >> 1). This technique ensures that each step in changing numbers results in transitioning only one bit.
Time complexity: O(2n), traversing all numbers.
Space complexity: O(1), using constant extra space.
1#include <stdio.h>
2#include <math.h>
3
4void grayCode(int n) {
5    int size = pow(2, n);
6    for (int i = 0; i < size; i++) {
7        int gray = i ^ (i >> 1);
8        printf("%d ", gray);
9    }
10}
11
12int main() {
13    int n = 2;
14    grayCode(n);
15    return 0;
16}This C program calculates Gray codes by iterating from 0 to 2n - 1, computing each Gray code number using i ^ (i >> 1) for each integer i.
The Gray code can be recursively generated by reflecting the existing sequence. Start with a base case of n=1: [0,1]. For each subsequent n, reflect the current list, prepend a bit to the reflected part, and concatenate the results: if Gn-1 = [0, 1], then Gn = [0Gn-1, 1Gn-1].
Time complexity: O(2n), where recursions reflect and build upon previous results.
Space complexity: O(2n), allocating for the result array.
1using System.Collections.Generic;
class Program {
    static List<int> GrayCode(int n) {
        if (n == 0) return new List<int> { 0 };
        List<int> lower = GrayCode(n - 1);
        List<int> result = new List<int>(lower);
        int addOn = 1 << (n - 1);
        for (int i = lower.Count - 1; i >= 0; i--) {
            result.Add(lower[i] | addOn);
        }
        return result;
    }
    static void Main() {
        int n = 2;
        List<int> gray = GrayCode(n);
        Console.WriteLine(string.Join(" ", gray));
    }
}This C# program recursively generates Gray code by first getting a baseline sequence, reflecting it and adjusting with bitwise operations, storing each new sequence state.