Sponsored
Sponsored
The dynamic programming approach uses a 2D table to store results of subproblems. We define dp[i][j] as True if the first i characters in the string s can be matched by the first j characters of the pattern p.
Base Cases:
Fill the table using the following rules:
Time Complexity: O(m*n) where m and n are the lengths of s and p, respectively.
Space Complexity: O(m*n) due to the storage of the dp table.
1var isMatch = function(s, p) {
2 const m = s.length;
3 const n = p.length;
4 const
This JavaScript solution leverages a 2D array to simulate the dynamic programming matrix. The matching logic mirrors the logic employed in the other languages.
The greedy algorithm approach tracks the position of the last '*' in the pattern and attempts to match remaining characters greedily. We maintain two pointers, one for the string and one for the pattern. When encountering '*', we remember the positions of both pointers in order to backtrack if needed.
If characters in p and s match or if the pattern has '?', both pointers are incremented. For '*', we shift the pattern pointer and remember indices for future potential matches. If there's a mismatch after '*', we use these remembered indices to backtrack.
Time Complexity: O(m + n) due to possible backtracking
Space Complexity: O(1) requiring constant storage for indices.
The Java code follows a similar pattern to its counterparts in executing greedy pattern exploration, managing unmatched scenarios through backtracked indices.