Sponsored
Sponsored
This approach uses a dynamic programming (DP) solution where we maintain a 2D array called dp
. The element dp[i][j]
represents the maximum number of lines that can be drawn without crossing up to the i-th element of nums1 and the j-th element of nums2.
The DP formulation is based on: if nums1[i] == nums2[j]
, then dp[i][j] = dp[i-1][j-1] + 1
. Otherwise, dp[i][j] = max(dp[i-1][j], dp[i][j-1])
.
The final answer is found in dp[m][n]
, where m and n are the lengths of nums1
and nums2
respectively. This approach runs in O(m * n) time complexity and uses O(m * n) space.
Time Complexity: O(m * n), where m and n are the lengths of nums1 and nums2.
Space Complexity: O(m * n), for the dp array.
1#include <stdio.h>
2#include <string.h>
3
4int maxUncrossedLines(int* A, int ASize, int* B, int BSize)
The C solution uses a 2D array dp
which is initialized to zero and filled using a nested loop. For each pair of elements in nums1
and nums2
, if they are equal, we increment the value from diagonally top-left in the dp
array and store it in the current cell. If they are not equal, we take the maximum value from either directly above or to the left of the current cell. This ensures that we are keeping track of the longest sequence of lines possible up to the current elements.
This approach is an optimization of the basic dynamic programming solution by reducing space complexity. Instead of utilizing a 2D array, we can use a single-dimensional array to store only the current and previous row information, thus reducing the space usage. This takes advantage of the fact that the current DP state depends only on the previous state, not all preceding states.
We maintain two 1D arrays, and they get updated in each iteration over the second array, resulting in reduced space complexity to O(min(m, n)).
Time Complexity: O(m * n), where m and n are the lengths of nums1 and nums2.
Space Complexity: O(min(m, n)), for the dp array.
In JavaScript, the optimal rolling array structure employs seamless updates to the dp
list, minimizing historic data repetition while fostering dynamic comparison solutions for dual-integer lists.