
Sponsored
Sponsored
This approach uses Depth-First Search (DFS) to mark all 'O's connected to the boundary as safe. These 'O's cannot be converted to 'X' because they are on the boundary or connected to the boundary. The rest of the 'O's can be safely converted to 'X'.
Time Complexity: O(m * n), Space Complexity: O(m * n) due to the DFS recursion stack.
1var solve = function(board) {
2 function dfs(row, col) {
3 if (row < 0 || col < 0 || row >= m || col >= n || board[row][col] !== 'O') return;
4 board[row][col] = 'A';
5 dfs(row - 1, col);
6 dfs(row + 1, col);
7 dfs(row, col - 1);
8 dfs(row, col + 1);
9 }
10
11 let m = board.length;
12 if (m === 0) return;
13 let n = board[0].length;
14
15 for (let i = 0; i < m; i++) {
16 if (board[i][0] === 'O') dfs(i, 0);
17 if (board[i][n - 1] === 'O') dfs(i, n - 1);
18 }
19
20 for (let j = 0; j < n; j++) {
21 if (board[0][j] === 'O') dfs(0, j);
22 if (board[m - 1][j] === 'O') dfs(m - 1, j);
23 }
24
25 for (let i = 0; i < m; i++) {
26 for (let j = 0; j < n; j++) {
27 if (board[i][j] === 'O') board[i][j] = 'X';
28 if (board[i][j] === 'A') board[i][j] = 'O';
29 }
30 }
31};JavaScript code defines a dfs function to handle each region, converting safe 'O's to 'A's. It then performs conversion of remaining 'O's to 'X'.
This approach uses Breadth-First Search (BFS) utilizing a queue to explore 'O's connected to the boundary. This approach is iterative and avoids deep recursion, keeping the method stack usage low.
Time Complexity: O(m * n), Space Complexity: O(m * n) for the queue's maximal use.
1var
JavaScript implementation relies on a queue for BFS functionality, providing scalable evaluation of cell checks and updates based on adjacency rules efficiently.