Sponsored
Sponsored
This approach uses backtracking to recursively split the string into all potential combinations of integers and checks if they form a valid Fibonacci sequence.
Time Complexity: O(2^n), since each combination of splitting points is considered recursively.
Space Complexity: O(n), for the recursion stack and the result list.
1function splitIntoFibonacci(S) {
2 const result = [];
3
4 function backtrack(index) {
5 if (index === S.length) return result.length >= 3;
6
7 let currentNumber = 0;
8 for (let i = index; i < S.length; i++) {
9 if (i > index && S[index] === '0') break;
10 currentNumber = currentNumber * 10 + (S[i] - '0');
11 if (currentNumber > Math.pow(2, 31) - 1) break;
12
13 if (result.length < 2 || currentNumber === result[result.length - 1] + result[result.length - 2]) {
14 result.push(currentNumber);
15 if (backtrack(i + 1)) return true;
16 result.pop();
17 }
18 }
19 return false;
20 }
21
22 return backtrack(0) ? result : [];
23}
This JavaScript code employs a recursive backtracking technique to find Fibonacci-like sequences in a string.
backtrack
function orchestrates the recursive exploration of valid sequences.This approach involves iteratively parsing possible substrings and dynamically checking for valid Fibonacci sequences.
Time Complexity: O(n^3), due to nested loops exploring potential splits and sequence validity.
Space Complexity: O(n), primarily to store intermediate sequence results.
1import java.util.*;
2
This Java code uses an iterative method to find Fibonacci-like sequences.
isValid
function checks if extending the sequence remains valid.