Sponsored
Sponsored
This approach involves maintaining a running maximum for the left subarray and a suffix minimum for the right subarray. By iterating through the array and comparing these values, we can determine the appropriate partition point where all conditions are satisfied.
Time Complexity: O(n) - Linear scan of the array.
Space Complexity: O(1) - Only variables used for tracking, no extra storage required.
1#include <stdio.h>
2
3int partitionDisjoint(int* nums, int numsSize) {
4 int maxLeft = nums[0];
5 int partitionIdx = 0;
6 int maxSoFar = nums[0];
7
8 for (int i = 1; i < numsSize; i++) {
9 if (nums[i] < maxLeft) {
10 partitionIdx = i;
11 maxLeft = maxSoFar;
12 } else {
13 if (nums[i] > maxSoFar) {
14 maxSoFar = nums[i];
15 }
16 }
17 }
18
19 return partitionIdx + 1;
20}
21
22int main() {
23 int nums[] = {5, 0, 3, 8, 6};
24 int result = partitionDisjoint(nums, 5);
25 printf("%d\n", result); // Output: 3
26 return 0;
27}
28
The C solution uses two variables, maxLeft
and maxSoFar
, to track the maximum values during the iteration through the array. Whenever we encounter an element smaller than maxLeft
, it updates the partition index to that position and sets maxLeft
to maxSoFar
. This ensures all conditions of the partition are maintained.
This approach involves using two additional arrays: one to track the maximum values until any index from the left and another to track minimum values from the right. These auxiliary arrays help determine where a valid partition can be made in the original array.
Time Complexity: O(n) - Needs three linear passes through the array.
Space Complexity: O(n) - Additional space for two auxiliary arrays.
1
public class PartitionArray {
public static int PartitionDisjoint(int[] nums) {
int n = nums.Length;
int[] leftMax = new int[n];
int[] rightMin = new int[n];
leftMax[0] = nums[0];
for (int i = 1; i < n; i++) {
leftMax[i] = Math.Max(nums[i], leftMax[i - 1]);
}
rightMin[n - 1] = nums[n - 1];
for (int i = n - 2; i >= 0; i--) {
rightMin[i] = Math.Min(nums[i], rightMin[i + 1]);
}
for (int i = 0; i < n - 1; i++) {
if (leftMax[i] <= rightMin[i + 1]) {
return i + 1;
}
}
return n;
}
public static void Main() {
int[] nums = { 5, 0, 3, 8, 6 };
Console.WriteLine(PartitionDisjoint(nums)); // Output: 3
}
}
This C# approach uses two separate arrays to maintain values required for a correct partition, allowing easy identification of the appropriate partition point based on the maximum and minimum conditions set during pre-processing.