Sponsored
Sponsored
This approach uses two pointers: one to track the position for the next non-zero element and the other to iterate through the array. We move all non-zero elements to the beginning of the array using these two pointers and fill the remaining positions with zeroes.
Time Complexity: O(n), where n is the length of the array. We make a single pass through the array.
Space Complexity: O(1), as we perform the operation in place.
1def moveZeroes(nums):
2 lastNonZeroFoundAt = 0
3 for i in range(len(nums)):
4 if nums[i] != 0:
5 nums[lastNonZeroFoundAt] = nums[i]
6 lastNonZeroFoundAt += 1
7 for i in range(lastNonZeroFoundAt, len(nums)):
8 nums[i] = 0In Python, we iteratively move non-zero elements to the front using lastNonZeroFoundAt as a pointer and then fill the rest of the array with zeroes.
This method uses a two-pointer technique where we place one pointer at the beginning of the array and the other to iterate through the array. Whenever we encounter a non-zero element, we swap it with the first pointer's position, allowing us to effectively move zeroes to the end by swapping.
Time Complexity: O(n), single iteration with swaps.
Space Complexity: O(1), in-place swaps.
1public class Solution {
public void MoveZeroes(int[] nums) {
int j = 0;
for (int i = 0; i < nums.Length; i++) {
if (nums[i] != 0) {
int temp = nums[j];
nums[j] = nums[i];
nums[i] = temp;
j++;
}
}
}
}This C# solution uses a swap logic similar to the C solution, incrementing j every time a non-zero element is swapped to the front.