Sponsored
Sponsored
Given the array is sorted, we can efficiently search for the h-index using binary search, aiming for logarithmic time complexity. The idea is to use the binary search to find the maximum h such that citations[h] ≥ h.
Time Complexity: O(log n).
Space Complexity: O(1).
1#include <stdio.h>
2
3int hIndex(int* citations, int citationsSize) {
4 int left = 0, right = citationsSize - 1, n = citationsSize;
5 while (left <= right) {
6 int mid = left + (right - left) / 2;
7 if (citations[mid] == n - mid) {
8 return n - mid;
9 } else if (citations[mid] < n - mid) {
10 left = mid + 1;
11 } else {
12 right = mid - 1;
13 }
14 }
15 return n - left;
16}
17
18int main() {
19 int citations[] = {0, 1, 3, 5, 6};
20 int n = sizeof(citations) / sizeof(citations[0]);
21 printf("%d\n", hIndex(citations, n)); // Output: 3
22 return 0;
23}
The C solution defines a function hIndex
using binary search to find the h-index. It utilizes a loop to adjust left and right boundaries based on comparison, reducing the search space logarithmically.
In this linear scan approach, we traverse the sorted citations list from beginning to end. The goal is to determine the maximum valid h-index by checking citations against their corresponding paper count.
Time Complexity: O(n).
Space Complexity: O(1).
1#include <iostream>
2#include <vector>
int hIndex(std::vector<int>& citations) {
int n = citations.size();
for (int i = 0; i < n; ++i) {
if (citations[i] >= n - i) {
return n - i;
}
}
return 0;
}
int main() {
std::vector<int> citations = {0, 1, 3, 5, 6};
std::cout << hIndex(citations) << std::endl; // Output: 3
return 0;
}
The C++ solution uses a for
loop for a linear scan through the citations list. It checks if the current citation is high enough compared with the number of papers and calculates the h-index directly.