This approach involves using dynamic programming to store solutions to subproblems in a table and build up to the solution of the original problem. By doing so, we can avoid redundant calculations and achieve a more efficient solution.
Time Complexity: O(n)
Space Complexity: O(n)
1# Python code example
The Python implementation uses a list to keep track of results calculated through the dynamic programming paradigm, spacing out into solving for the entire problem.
A greedy algorithm is an approach that constructs a solution by choosing the best option at each step. This approach may not always yield the optimal global solution, but for certain problems, especially those with optima formed by greedy choices, it can be very efficient.
Time Complexity: O(n log n) /* or other depending on the specific problem */
Space Complexity: O(1) /* if in-place, depending on conditions */
1/* C code example */
This C solution applies a greedy technique where at each step, the locally optimal choice is made with hopes of finding the global optimum.