This approach involves using dynamic programming to store solutions to subproblems in a table and build up to the solution of the original problem. By doing so, we can avoid redundant calculations and achieve a more efficient solution.
Time Complexity: O(n)
Space Complexity: O(n)
1# Python code example
The Python implementation uses a list to keep track of results calculated through the dynamic programming paradigm, spacing out into solving for the entire problem.
A greedy algorithm is an approach that constructs a solution by choosing the best option at each step. This approach may not always yield the optimal global solution, but for certain problems, especially those with optima formed by greedy choices, it can be very efficient.
Time Complexity: O(n log n) /* or other depending on the specific problem */
Space Complexity: O(1) /* if in-place, depending on conditions */
1// JavaScript code example
For JavaScript, the greedy approach is employed through iterations that focus on the most efficient choice at each step, one element at a time.