Sponsored
Sponsored
In this approach, we use dynamic programming to solve the problem. We define a DP array where dp[i] represents the minimum number of extra characters from index 0 to i of the string s. Initially, we set dp[0] to 0 because there are no extra characters in an empty prefix. For each index i while iterating through the string s, we check every j from 0 to i-1 and see if substring s[j:i] exists in the dictionary. If yes, we update dp[i] to min(dp[i], dp[j]), otherwise, we set dp[i] to dp[i-1] + 1.
Time Complexity: O(N^2*M), where N is the length of the string s and M is the average length of words in the dictionary.
Space Complexity: O(N) because of the DP array.
1def min_extra_chars(s, dictionary):
2 dict_set = set(dictionary)
3 n = len(s)
4 dp = [n] * (n + 1)
5 dp[0] = 0
6
7 for i in range(1, n + 1):
8 dp[i] = dp[i - 1] + 1
9 for j in range(i):
10 if s[j:i] in dict_set:
11 dp[i] = min(dp[i], dp[j])
12 return dp[n]
13
14s = "leetscode"
15dictionary = ["leet", "code", "leetcode"]
16print(min_extra_chars(s, dictionary)) # Output: 1
The Python solution employs a set for the dictionary and a dynamic programming array to calculate the minimum extra characters for each prefix length, checking substrings against the dictionary.
To solve the problem using a Trie and memoization, we first build a Trie from the dictionary. We then use a recursive function with memoization to attempt to decompose the string s into valid segments. For each position in the string, we check possible substrings against the Trie, saving calculated results to avoid redundant computations.
Time Complexity: O(N*M), with N being the string length and M the average dictionary word length due to Trie traversal.
Space Complexity: O(N + T), N is for the memo array and T is for Trie storage.
using System.Collections.Generic;
class TrieNode {
public Dictionary<char, TrieNode> Children = new Dictionary<char, TrieNode>();
public bool IsEnd;
}
class Trie {
public TrieNode Root = new TrieNode();
public void Insert(string word) {
var node = Root;
foreach (var ch in word) {
if (!node.Children.ContainsKey(ch))
node.Children[ch] = new TrieNode();
node = node.Children[ch];
}
node.IsEnd = true;
}
}
class Solution {
private int MinExtraHelper(string s, int idx, TrieNode root, int[] memo) {
int n = s.Length;
if (idx == n) return 0;
if (memo[idx] != -1) return memo[idx];
int minExtra = n - idx;
TrieNode node = root;
for (int i = idx; i < n; i++) {
if (!node.Children.ContainsKey(s[i])) break;
node = node.Children[s[i]];
if (node.IsEnd)
minExtra = Math.Min(minExtra, MinExtraHelper(s, i + 1, root, memo));
}
minExtra = Math.Min(minExtra, 1 + MinExtraHelper(s, idx + 1, root, memo));
return memo[idx] = minExtra;
}
public int MinExtraChars(string s, List<string> dictionary) {
Trie trie = new Trie();
foreach (var word in dictionary)
trie.Insert(word);
int n = s.Length;
int[] memo = new int[n];
Array.Fill(memo, -1);
return MinExtraHelper(s, 0, trie.Root, memo);
}
static void Main(string[] args) {
var s = "leetscode";
var dictionary = new List<string> { "leet", "code", "leetcode" };
var solution = new Solution();
Console.WriteLine(solution.MinExtraChars(s, dictionary)); // Output: 1
}
}
This C# solution constructs a Trie for dictionary look-up and uses a recursive approach with memoization to optimize computations, reducing the number of unmatched characters by leveraging the Trie to find valid words swiftly.