
Sponsored
Sponsored
This approach employs sorting the array and fixing two pointers while searching for the other two via a two-pointer method. This reduces the dimensionality of the problem stepwise.
Time Complexity: O(n^3), where n is the number of elements in the array due to three nested loops.
Space Complexity: O(1), excluding the space required for the output storage.
1#include <stdio.h>
2#include <stdlib.h>
3
4void swap(int *a, int *b) {
5 int temp = *a;
6 *a = *b;
7 *b = temp;
8}
9
10void sort(int *arr, int n) {
11 for (int i = 0; i < n - 1; i++) {
12 for (int j = 0; j < n - i - 1; j++) {
13 if (arr[j] > arr[j + 1]) {
14 swap(&arr[j], &arr[j + 1]);
15 }
16 }
17 }
18}
19
20int **fourSum(int *nums, int numsSize, int target, int *returnSize, int **returnColumnSizes) {
21 sort(nums, numsSize);
22 int **result = (int **)malloc(sizeof(int *) * 1000);
23 *returnSize = 0;
24 *returnColumnSizes = (int *)malloc(sizeof(int) * 1000);
25
26 for (int i = 0; i < numsSize - 3; i++) {
27 if (i > 0 && nums[i] == nums[i - 1]) continue;
28 for (int j = i + 1; j < numsSize - 2; j++) {
29 if (j > i + 1 && nums[j] == nums[j - 1]) continue;
30 int k = j + 1, l = numsSize - 1;
31 while (k < l) {
32 int sum = nums[i] + nums[j] + nums[k] + nums[l];
33 if (sum == target) {
34 result[*returnSize] = (int *)malloc(sizeof(int) * 4);
35 result[*returnSize][0] = nums[i];
36 result[*returnSize][1] = nums[j];
37 result[*returnSize][2] = nums[k];
38 result[*returnSize][3] = nums[l];
39 (*returnColumnSizes)[*returnSize] = 4;
40 (*returnSize)++;
41 while (k < l && nums[k] == nums[k + 1]) k++;
42 while (k < l && nums[l] == nums[l - 1]) l--;
43 k++; l--;
44 } else if (sum < target) {
45 k++;
46 } else {
47 l--;
48 }
49 }
50 }
51 }
52 return result;
53}
54
55int main() {
56 int nums[] = {1, 0, -1, 0, -2, 2};
57 int numsSize = sizeof(nums) / sizeof(int);
58 int target = 0;
59 int returnSize;
60 int *returnColumnSizes;
61 int **result = fourSum(nums, numsSize, target, &returnSize, &returnColumnSizes);
62 for (int i = 0; i < returnSize; i++) {
63 printf("[%d, %d, %d, %d]\n", result[i][0], result[i][1], result[i][2], result[i][3]);
64 free(result[i]);
65 }
66 free(result);
67 free(returnColumnSizes);
68 return 0;
69}In this C solution, a simple bubble sort algorithm is used to sort the array. The quadruplets are found by applying two nested loops fixing two elements and then using the two-pointer technique on the remaining array to find pairs that sum up to the required target. Duplication is avoided by skipping identical elements during iteration.
This method reduces the four-sum problem by first reducing it to a three-sum problem, and then a two-sum problem using hash maps.
Time Complexity: O(n^2), considering the use of a hash map.
Space Complexity: O(n), for storing intermediate and potential pairs.
1using System;
using System.Collections.Generic;
class FourSumSolution {
public IList<IList<int>> FourSum(int[] nums, int target) {
Array.Sort(nums);
List<IList<int>> result = new List<IList<int>>();
int n = nums.Length;
for (int i = 0; i < n - 3; i++) {
if (i > 0 && nums[i] == nums[i - 1]) continue;
for (int j = i + 1; j < n - 2; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
HashSet<int> seen = new HashSet<int>();
for (int k = j + 1; k < n; k++) {
int complement = target - nums[i] - nums[j] - nums[k];
if (seen.Contains(complement)) {
result.Add(new List<int>{nums[i], nums[j], nums[k], complement});
while (k + 1 < n && nums[k] == nums[k + 1]) k++;
}
seen.Add(nums[k]);
}
}
}
return result;
}
static void Main() {
var solver = new FourSumSolution();
int[] nums = {1, 0, -1, 0, -2, 2};
int target = 0;
var result = solver.FourSum(nums, target);
foreach (var r in result) {
Console.WriteLine("[{0}]", string.Join(", ", r));
}
}
}In C#, through increased computational capacities with hash sets, overlaps are checked against reference maps. Sorting allows structured evaluation and quick lookups via the hash tables.