To solve this problem using the Disjoint Set Union (DSU) approach, we aim to union nodes based on their parent-child relationships. A valid tree should follow these rules:
Time Complexity: O(n), where n is the number of nodes, due to each union and find operation being nearly constant with path compression.
Space Complexity: O(n) for the parent array.
1class Solution {
2 public int find(int[] parent, int x) {
3 if (parent[x] != x) {
4 parent[x] = find(parent, parent[x]);
5 }
6 return parent[x];
7 }
8
9 public boolean unionFind(int[] parent, int x, int y) {
10 int rootX = find(parent, x);
11 int rootY = find(parent, y);
12
13 if (rootX == rootY) return false;
14 parent[rootY] = rootX;
15 return true;
16 }
17
18 public boolean validateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
19 int[] parent = new int[n];
20 int[] hasParent = new int[n];
21 for (int i = 0; i < n; ++i) {
22 parent[i] = i;
23 }
24
25 for (int i = 0; i < n; ++i) {
26 if (leftChild[i] != -1) {
27 if (hasParent[leftChild[i]] == 1 || !unionFind(parent, i, leftChild[i])) {
28 return false;
29 }
30 hasParent[leftChild[i]] = 1;
31 }
32 if (rightChild[i] != -1) {
33 if (hasParent[rightChild[i]] == 1 || !unionFind(parent, i, rightChild[i])) {
34 return false;
35 }
36 hasParent[rightChild[i]] = 1;
37 }
38 }
39
40 int rootCount = 0;
41 for (int i = 0; i < n; ++i) {
42 if (hasParent[i] == 0) {
43 rootCount++;
44 }
45 }
46
47 return rootCount == 1;
48 }
49}
This Java solution, similar in logic to the C and C++ solutions, uses a union-find structure managed through unionFind
and find
methods. The hasParent
array manages in-degree checks to ensure a single parent per node, avoiding tree invalidation by multiple roots or cycles. After scanning nodes, it confirms just one root using hasParent
.
This approach involves calculating the in-degree of each node and checking connectivity via a DFS. The key aspects of a tree like single-root presence and cycle-checking can be managed by:
Time Complexity: O(n), since each node and its immediate edges are evaluated once in each step, including in-drives calculations and DFS.
Space Complexity: O(n) for holding visited tracking and in-degree counts.
1public class Solution {
2 private void Dfs(int node, bool[] visited, int[][] children) {
3 if (visited[node]) return;
4 visited[node] = true;
5 if (children[0][node] != -1) Dfs(children[0][node], visited, children);
6 if (children[1][node] != -1) Dfs(children[1][node], visited, children);
7 }
8
9 public bool ValidateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
10 int[] inDegree = new int[n];
11 for (int i = 0; i < n; i++) {
12 if (leftChild[i] != -1) inDegree[leftChild[i]]++;
13 if (rightChild[i] != -1) inDegree[rightChild[i]]++;
14 }
15
16 int root = -1;
17 for (int i = 0; i < n; i++) {
18 if (inDegree[i] == 0) {
19 if (root == -1) {
20 root = i;
21 } else {
22 return false;
23 }
24 }
25 }
26
27 if (root == -1) return false;
28
29 bool[] visited = new bool[n];
30 Dfs(root, visited, new int[][] { leftChild, rightChild });
31
32 foreach (bool v in visited) {
33 if (!v) return false;
34 }
35
36 return true;
37 }
38}
The C# approach determines the root node based on the inDegree
, working under the trademark binary tree outline that each node may only have a single incoming edge (or reference) unless it is the root. Exploiting this relation, all nodes should receive connectivity verification through Dfs
, making sure the graph satisfies full extent reachability in step-results.