To solve this problem using the Disjoint Set Union (DSU) approach, we aim to union nodes based on their parent-child relationships. A valid tree should follow these rules:
Time Complexity: O(n), where n is the number of nodes, due to each union and find operation being nearly constant with path compression.
Space Complexity: O(n) for the parent array.
1public class Solution {
2 public int Find(int[] parent, int x) {
3 if (parent[x] != x) {
4 parent[x] = Find(parent, parent[x]);
5 }
6 return parent[x];
7 }
8
9 public bool Union(int[] parent, int x, int y) {
10 int rootX = Find(parent, x);
11 int rootY = Find(parent, y);
12 if (rootX == rootY) return false;
13 parent[rootY] = rootX;
14 return true;
15 }
16
17 public bool ValidateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
18 int[] parent = new int[n];
19 int[] hasParent = new int[n];
20 for (int i = 0; i < n; ++i) parent[i] = i;
21
22 for (int i = 0; i < n; ++i) {
23 if (leftChild[i] != -1) {
24 if (hasParent[leftChild[i]] == 1 || !Union(parent, i, leftChild[i])) {
25 return false;
26 }
27 hasParent[leftChild[i]] = 1;
28 }
29 if (rightChild[i] != -1) {
30 if (hasParent[rightChild[i]] == 1 || !Union(parent, i, rightChild[i])) {
31 return false;
32 }
33 hasParent[rightChild[i]] = 1;
34 }
35 }
36
37 int rootCount = 0;
38 for (int i = 0; i < n; ++i) {
39 if (hasParent[i] == 0) {
40 rootCount++;
41 }
42 }
43
44 return rootCount == 1;
45 }
46}
The C# implementation mirrors other union-find solutions, modifying the state intelligently between nodes. Components track their leaders (or roots) through recursion and path compression in Find
and are unified via Union
. Constraints enforce at most one parent per node via a check through hasParent
, ensuring single connectivity by requiring one and only one root.
This approach involves calculating the in-degree of each node and checking connectivity via a DFS. The key aspects of a tree like single-root presence and cycle-checking can be managed by:
Time Complexity: O(n), since each node and its immediate edges are evaluated once in each step, including in-drives calculations and DFS.
Space Complexity: O(n) for holding visited tracking and in-degree counts.
1class Solution {
2 private void dfs(int node, boolean[] visited, int[][] children) {
3 if (visited[node]) return;
4 visited[node] = true;
5 if (children[0][node] != -1) dfs(children[0][node], visited, children);
6 if (children[1][node] != -1) dfs(children[1][node], visited, children);
7 }
8
9 public boolean validateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
10 int[] inDegree = new int[n];
11 int root = -1;
12
13 for (int i = 0; i < n; ++i) {
14 if (leftChild[i] != -1) inDegree[leftChild[i]]++;
15 if (rightChild[i] != -1) inDegree[rightChild[i]]++;
16 }
17
18 for (int i = 0; i < n; ++i) {
19 if (inDegree[i] == 0) {
20 if (root == -1) {
21 root = i;
22 } else {
23 return false;
24 }
25 }
26 }
27
28 if (root == -1) return false;
29
30 boolean[] visited = new boolean[n];
31 dfs(root, visited, new int[][]{leftChild, rightChild});
32
33 for (boolean v : visited) {
34 if (!v) return false;
35 }
36
37 return true;
38 }
39}
The Java version checks for a single node with inDegree
zero, identifying it as the root. Nodes are structured as positions within two arrays/lists representing binary tree branches. The DFS aims to explore all nodes in one pass, validating complete connectivity without omitted nodes.