To solve this problem using the Disjoint Set Union (DSU) approach, we aim to union nodes based on their parent-child relationships. A valid tree should follow these rules:
Time Complexity: O(n), where n is the number of nodes, due to each union and find operation being nearly constant with path compression.
Space Complexity: O(n) for the parent array.
1public class Solution {
2 public int Find(int[] parent, int x) {
3 if (parent[x] != x) {
4 parent[x] = Find(parent, parent[x]);
5 }
6 return parent[x];
7 }
8
9 public bool Union(int[] parent, int x, int y) {
10 int rootX = Find(parent, x);
11 int rootY = Find(parent, y);
12 if (rootX == rootY) return false;
13 parent[rootY] = rootX;
14 return true;
15 }
16
17 public bool ValidateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
18 int[] parent = new int[n];
19 int[] hasParent = new int[n];
20 for (int i = 0; i < n; ++i) parent[i] = i;
21
22 for (int i = 0; i < n; ++i) {
23 if (leftChild[i] != -1) {
24 if (hasParent[leftChild[i]] == 1 || !Union(parent, i, leftChild[i])) {
25 return false;
26 }
27 hasParent[leftChild[i]] = 1;
28 }
29 if (rightChild[i] != -1) {
30 if (hasParent[rightChild[i]] == 1 || !Union(parent, i, rightChild[i])) {
31 return false;
32 }
33 hasParent[rightChild[i]] = 1;
34 }
35 }
36
37 int rootCount = 0;
38 for (int i = 0; i < n; ++i) {
39 if (hasParent[i] == 0) {
40 rootCount++;
41 }
42 }
43
44 return rootCount == 1;
45 }
46}
The C# implementation mirrors other union-find solutions, modifying the state intelligently between nodes. Components track their leaders (or roots) through recursion and path compression in Find
and are unified via Union
. Constraints enforce at most one parent per node via a check through hasParent
, ensuring single connectivity by requiring one and only one root.
This approach involves calculating the in-degree of each node and checking connectivity via a DFS. The key aspects of a tree like single-root presence and cycle-checking can be managed by:
Time Complexity: O(n), since each node and its immediate edges are evaluated once in each step, including in-drives calculations and DFS.
Space Complexity: O(n) for holding visited tracking and in-degree counts.
1#include <vector>
2
3void dfs(int node, std::vector<bool>& visited, std::vector<std::vector<int>>& adj) {
4 if (visited[node]) return;
5 visited[node] = true;
6 for (int child : adj[node]) {
7 dfs(child, visited, adj);
8 }
9}
10
11bool validateBinaryTreeNodes(int n, std::vector<int>& leftChild, std::vector<int>& rightChild) {
12 std::vector<int> inDegree(n, 0);
13 std::vector<std::vector<int>> adj(n);
14
15 for (int i = 0; i < n; ++i) {
16 if (leftChild[i] != -1) {
17 adj[i].push_back(leftChild[i]);
18 inDegree[leftChild[i]]++;
19 }
20 if (rightChild[i] != -1) {
21 adj[i].push_back(rightChild[i]);
22 inDegree[rightChild[i]]++;
23 }
24 }
25
26 int root = -1;
27 for (int i = 0; i < n; ++i) {
28 if (inDegree[i] == 0) {
29 if (root == -1) {
30 root = i;
31 } else {
32 return false;
33 }
34 }
35 }
36
37 if (root == -1) return false;
38
39 std::vector<bool> visited(n, false);
40 dfs(root, visited, adj);
41
42 for (auto v : visited) {
43 if (!v) return false;
44 }
45 return true;
46}
This solution represents each node and its relationships as directed graph edges, forming an adjacency list adj
. It begins by resolving in-degrees to locate the root. The dfs
ensures all nodes are explored from the root, confirming all nodes are part of a single, adequately connected component with single ingress from the root.