Sponsored
Sponsored
This approach involves creating a basic Trie data structure using a tree of nodes. Each node represents a character in a word. Starting from a root node, each character of the word is inserted sequentially, with branches representing the progression to subsequent characters. This forms a chain of nodes (linked in a tree-like manner) from the root to the nodes representing complete words. For searching, we traverse these nodes based on the characters of the input word or prefix to check for existence.
Time Complexity: Insert, search, and startsWith operations are O(m), where m is the length of the word/prefix.
Space Complexity: O(26 * n * m) in the worst case, where n is the number of inserted words and m is the average length of the words. Each insertion can potentially add m nodes with 26 possible children each.
1class TrieNode {
2 constructor() {
3 this.children = {};
4 this.isEndOfWord = false;
5
This JavaScript implementation features a TrieNode class containing a dictionary for nodes and a boolean to signal word ending. Trie, built from an instance of TrieNode, allows word insertion by guiding a cursor from the root node through a character path, creating intermediate child nodes as necessary, and finally marking the terminal node of the word complete. The search method checks the presence and end marking, navigating each character sequentially. The startsWith method follows the provided character prefix completely while verifying node availability without requiring end marking.
This approach relies on maps (or hashmaps) for storing children nodes dynamically. The advantage of using maps over arrays in this context arises from reduced space consumption when handling sparse trees since only existing characters are stored. Nodes manage their children using hash references, leading to more flexible branching.
Time Complexity: O(m) per operation where m is the word/prefix length.
Space Complexity: O(n * m), where n estimates the word count and m accounts for varying lengths since nodes only maintain necessary mappings.
1class TrieNode:
2
In this Python solution, each TrieNode contains a dictionary (children) providing direct access to only required child characters. This approach optimizes storage, especially reducing overhead when branching is sparse. The root provides the base node in the Trie. The insert method applies setdefault for dictionary operation - simplifying conditional insertion logic. Both search and startsWith check the presence of each character in sequence traversing the root to target node, utilizing dictionary fast access and probing methods.