
Sponsored
Sponsored
This approach involves splitting the problem into two scenarios: robbing from house 0 to house n-2, and from house 1 to house n-1. The aim is to apply the linear version of the House Robber problem to each scenario separately and then take the maximum of the two resulting summed values.
Time Complexity: O(n).
Space Complexity: O(1).
1
2public class Solution {
3 private int RobLinear(int[] nums, int start, int end) {
4 int prev1 = 0, prev2 = 0;
5 for (int i = start; i < end; i++) {
6 int temp = prev1;
7 prev1 = Math.Max(nums[i] + prev2, prev1);
8 prev2 = temp;
9 }
10 return prev1;
11 }
12
13 public int Rob(int[] nums) {
14 if (nums.Length == 1) return nums[0];
15 return Math.Max(RobLinear(nums, 0, nums.Length - 1), RobLinear(nums, 1, nums.Length));
16 }
17}
18This C# solution defines RobLinear for the linear version of the problem and solves it for two cases: one excluding the first and another excluding the last house. The maximum of these two outcomes is returned.
This approach implements a memoized version of the dynamic programming solution to avoid recomputing values. We explore two scenarios of the circle, taking into account the cycles explicitly by caching intermediate results.
Time Complexity: O(n).
Space Complexity: O(n) for the memoization array.
1
2
This Java solution uses an integer array memo for caching operations to minimize redundant computations. It features a robHelper private method to recursively determine the maximum amount drawable from specific index ranges. Each side of the circle is evaluated for maximizing results separately.